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1 Introduction

In this dissertation, we aim to construct and analyse splitting integrators for spiking

neuronal models. These are methods from geometric numerical analysis for the ap-

proximate solution of systems of ordinary or stochastic differential equations. The

aim is to study whether these numerical methods could preserve the spiking dy-

namics of the models more robustly than traditional schemes. We will focus on two

splitting approaches and four neuronal models. The first is the “canonical splitting”

proposed by Buckwar et al for the stochastic FitzHugh-Nagumo model [2]. The

second is an approach for “conditionally linear systems of ODEs” proposed by Chen

et al, and illustrated on the deterministic Van der Pol and Hodgkin-Huxley models

[3]. We extend the latter approach to systems of SDEs and prove that the 1-step

transition probability of the resulting follows a normal distribution under specific

conditions, a desirable property for the method to be used in parameter estimation

[2]. Furthermore, we show that the order of composition can affect the hypoellip-

ticity of the method. The four models considered here are the deterministic and

stochastic Van der Pol (VDP) [4], the Fitz-Hugh Nagumo (FHN) ([2]), the Izhike-

vich (IZ) [12] and the adaptive exponential integrate-and-fire models (AdEX) [1]. By

generalising a coordinate change proposed by León and Samson [14] for the stochas-

tic FHN, we also extend Stern’s approach to models that are not originally in this

“conditionally linear” form. We compare these splitting integrators with classical

finite difference methods such as Forward Euler and Runge-Kutta (fourth-order), for

the deterministic models, as well as Euler-Maruyama and tamed Euler-Maruyama,

for the stochastic models.

In the numerical experiments, Section 5, we reinforce existing results and present

new results showing that the splitting methods for the deterministic and stochastic

oscillatory models preserve the dynamics of the spiking behaviour (i.e. amplitudes

and frequencies) more robustly than classical integrators. We analyse the preserva-

tion of limit cycles, the distributions of the inter-spike-intervals and the quadratic

errors of all these methods. The canonical splitting proved to be the most robust

in almost all cases outperforming the Stern approach and the classical integrators,

except for in very “stiff” deterministic settings. We perform similar analysis for the

IZ and AdEx models, noting that these “spike-reset” models appear to be more

sensitive to the coordinate changes, limiting the performance of Stern’s approach.

We observe that all numerical methods are also less robust to changes in time-step

for these models due to error in the first spiking time - a studied difficulty when

integrating these models [19].

1



2 Splitting integrators

2.1 Lie-Trotter and Strang compositions

Splitting methods are a geometric approach to numerical integration. The approach

consists of decomposing a vector field into exactly integrable components.

Figure 1: Diagram showing the splitting of a vector field from [6]

Consider an initial value problem (IVP) given by the dynamical system:

dx(t) = f(x(t)) dt; x(0) = x0; t ∈ [0, T ] (1)

where f : Rd → Rd and x : R → Rd. In general, for a Lipschitz-continuous, non-

linear, vector field, f , this problem has a unique solution that cannot be written in

a closed form. As such, we aim to numerically approximate the solution, x(t), at

discrete time points ti i.e. xi ≈ x(ti). In order to approximate the solution to this

problem, we discretise time using a constant step size h > 0. Thus we define, for

i ∈ N,

ti = ih. (2)

We will focus on explicit methods meaning that our approximation xi depends only

on xj with 0 ≤ j < i. Therefore, our approximations will form a recursive sequence

(xi)i∈N. To this end, we adopt a splitting approach. We can split the vector field

into two (or more) sub-components,

dx(t) = f1(x(t)) + f2(x(t)) dt; x(0) = x0; t ∈ [0, T ] (3)

with fi : R → R for i = 1, 2. We use the sub-components to generate two separate

IVPs, given by,

dx1(t) = f1(x1(t)) dt; x1(0) = x
[1]
0 ; t ∈ [0, T ] (4)

dx2(t) = f2(x2(t)) dt; x2(0) = x
[2]
0 ; t ∈ [0, T ] (5)
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where x1(t) : R → Rd and x2(t) : R → Rd are solutions to the corresponding

problem. The aim is to choose the fi in such a way that the exact solution to the

sub-problems can be written in a explicit closed form. Assuming the sub-systems

can be solved explicitly, let φ
[k]
t (x0) denote the flow of the k-th sub-equation at time

t starting from x0. As such, we would like to take x
[1]
0 = x0 in the first step, and

x
[2]
0 = φ

[1]
h (x0) for some small time step h > 0.

Starting from a point, x0, we can solve according to one sub-vector field and then

the other. As in Figure 2, with x(0) acting as y0, this composition of the exact flows

of the sub-vector fields gives an approximation of the flow of the total vector field,

and so an approximation of the solution to the IVP. We can use this composition to

Figure 2: Diagram showing the Lie-Trotter approach from [6]

define an explicit numerical scheme. This is the so-called Lie-Trotter approach,

x̃LT (ti) = (φ
[1]
h ◦ φ[2]

h )(x̃LT (ti−1)), (6)

as in the right hand scheme in Figure 2. Using the same idea, we can flow according

to φ[1] for time h/2, flow according to φ[2] for time h and, then flow again according

to φ[1] for time h/2, as in Figure 3 defining another explicit numerical scheme. This

Figure 3: Diagram showing the Strang approach from [6]

approach is the so-called Strang approach,

x̃S(ti) = (φ
[1]
h/2 ◦ φ

[2]
h ◦ φ[1]

h/2)(x̃
S(ti−1)). (7)

Remark 1. Switching φ[1] and φ[2] in both the Lie-Trotter and Strang approaches

3



yields two further numerical schemes.

2.2 The canonical splitting

One potential approach to split vector fields for semi-linear equations is presented

by Buckwar et al [2]. The idea is to split the vector field, f , into a linear and a

non-linear part, thus generating two IVPs to solve. In this case, the IVP with a

linear vector field will be exactly integrable and the IVP with the non-linear vector

field may or may not be solvable depending on the chosen splitting and the con-

sidered model. This approach will henceforth be referred to as the canonical splitting.

Consider again the IVP (1) with f(x(t)) = Ax(t) + N(x(t)) where A ∈ Rd×d is

a matrix and N : Rd → Rd is a non-linear function. In the canonical splitting, we

pick

f [1](x(t)) = Ax(t), (8)

f [2](x(t)) = N(x(t)). (9)

Remark 2. This splitting is not necessarily unique as linear terms can also be

included in N(x).

This gives sub-systems

dx[1](t) = Ax[1](t) dt; x[1](0) = x
[1]
0 ; t ∈ [0, T ], (10)

dx[2](t) = N(x[2](t)) dt; x[2](0) = x
[2]
0 ; t ∈ [0, T ]. (11)

Integrating the first system exactly gives us

x[1](t) = eAtx
[1]
0 . (12)

In particular, this gives us the h−time flow

φ
[1]
h (x[1](ti−1)) := x[1](ti) = eAhx[1](ti−1), (13)

where eAh is an exponential matrix. We assume that N is such that the exact

solution to the IVP in (11) can be derived exactly. Therefore, we can write down

the second flow,

φ
[2]
h (x[2](ti−1)) := x[2](ti) = g(x[2](ti−1), h), (14)

where g : Rd × R → Rd and g(x
[2]
0 , t) solves the second IVP (11).
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Applying the Lie-Trotter and Strang compositions, we obtain the following explicit

numerical schemes,

x̃LT (ti) = (φ
[1]
h ◦ φ[2]

h )(x̃LT (ti−1)) = eAhg(x̃LT (ti−1), h), (15)

x̃S(ti) = (φ
[2]
h/2 ◦ φ

[1]
h ◦ φ[2]

h/2)(x̃
S(ti−1)) = g(eAhg(x̃LT (ti−1), h/2), h/2). (16)

This method generalises to a stochastic setting. Consider a stochastic differential

equation (SDE) of additive noise type,

dx(t) = f(x(t)) dt+ Σ dW (t); x(0) = x0; t ∈ [0, T ], (17)

where f : Rd → Rd, f(x(t)) = Ax(t) +N(x(t)), x : R → Rd and Σ : Rd×d → Rd×d is

a symmetric positive semi-definite matrix. W is the standard d−dimensional Wiener

process.

We split the vector field f as before but including the noise term in the linear

sub-equation. This gives us two sub-systems,

dx[1](t) = Ax[1](t) dt+ Σ dW (t); x[1](0) = x
[1]
0 ; t ∈ [0, T ] (18)

dx[2](t) = N(x[2](t)) dt; x[2](0) = x
[2]
0 ; t ∈ [0, T ]. (19)

The second sub-equation and its flow remain unchanged. The first sub-equation

now has exact solution,

x[1](t) = eAtx
[1]
0 +

∫ t

0

eA(t−s)Σ dW (s). (20)

Following the analysis in [2], we can see that the stochastic integral is normally

distributed with mean 0 and covariance matrix,

C(t) =

∫ t

0

eA(t−s)ΣΣ⊤(eA(t−s))⊤ ds, (21)

where A⊤ represents the transpose of the matrix i.e. A = (aij) has transpose

A⊤ = (aji). Hence the first flow becomes

φ
[1]
h (x[1](ti−1)) := x[1](ti) = eAhx[1](ti−1) + ξi−1, (22)

where the ξi are independent, identically distributed d−dimensional Gaussian vec-

tors with mean 0 and covariance matrix C(h). This gives us new numerical schemes,

x̃LT (ti) = (φ
[1]
h ◦ φ[2]

h )(x̃LT (ti−1)) = eAhg(x̃LT (ti−1), h) + ξi−1, (23)

x̃S(ti) = (φ
[2]
h/2 ◦ φ

[1]
h ◦ φ[2]

h/2)(x̃
S(ti−1)) = g(eAhg(x̃LT (ti−1), h/2) + ξi−1, h/2). (24)
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2.3 Conditional linearity and Stern’s approach

A different approach to splitting the vector field is presented by Chen et al in [3].

This splitting is for conditionally linear systems. It will be henceforth referred to as

Stern’s approach after Ari Stern who presented the method at the Warwick Seminar

for Algorithms & Computationally Intensive Inference [18].

Definition 1. A conditionally linear ODE system is a system of ODEs of the

form

dxi(t) = ai(x(t))xi(t) + bi(x(t)) dt i = 1, ..., d, (25)

where x(t) = (x1(t), x2(t), ..., xd(t)) and the ai, bi are (real-valued) functions that do

not depend on xi.

Notice that if the xj with j ̸= i are constant then ai(x) and bi(x) are constants

and each ODE in the system reduces to the following first order linear ODE with

constant coefficients

dxi(t) = aixi(t) + bi dt. (26)

Following the analysis from [3], the exact t-time flow starting from x0 has form,

xi(t) =

{
exp(tai)x0 − bi

ai
(1− exp(tai)) if ai ̸= 0

x0 + bit if ai = 0
. (27)

Chen et al use this property to define the following splitting approach [3].

Consider a conditionally linear system of ODEs where f : Rd → Rd is the vector

field with components fi : Rd → R given by,

fi(x(t)) = ai(x(t))xi(t) + bi(x(t)) i = 1, ..., d, (28)

where ai(x(t)), bi(x(t)) depend only on components xj(t) with j ̸= i. Then, for

i = 1, ..., d, we define sub-vector fields f (i) : Rd → Rd with jth component given by,

f
(i)
j =

{
fi(x) if i = j

0 if i ̸= j
. (29)

Clearly, we have

f = f (1) + f (2) + ...+ f (d), (30)

and so the vector field has been decomposed into sub-vector fields that are explicitly
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solvable. The exact solution to each sub-problem is known because, for each vector

field f (i), all xj(t) with j ̸= i are kept constant whilst xi(t) evolves according to a

linear ODE with constant coefficients. Let φ
(i)
h : Rd → Rd denote the exact h-time

flow of f (i). We can directly integrate to get the jth component,

φ
(i)
h,j(x) =


exp(hai(x))xi − bi(x)

ai(x)
(1− exp(hai(x))) if i = j and ai(x) ̸= 0

xi + hbi(x) if i = j and ai(x) = 0

xj if i ̸= j

(31)

2.4 Generalisation to Ornstein-Uhlenbeck equations

Whilst Chen et al only consider conditionally linear ODEs, we extend the approach

to the systems of Orstein-Uhlenbeck type.

Definition 2. An Ornstein-Uhlenbeck equation is an SDE of the form,

dx(t) = (ax(t) + b) dt+ c dW (t) (32)

for constants a, b ∈ R, c > 0, where x : R → R and W is the standard 1-d Wiener

process.

In order to extend Stern’s method, we need to be able to write down the exact

solution of an SDE of this form, as we could for the linear ODE with constant

coefficients. First we define the following family of equations,

Definition 3. An SDE is called linear in the narrow sense if it has the form,

dx(t) = (a(t)x(t) + b(t)) dt+ c(t) dW (t) (33)

where x, a, b : R → R, c : R → R+ and W is the standard 1-d Wiener process.

Kloeden and Platen give the exact solution to this more general case in [13]. The

exact solution, starting from x0, has the form

x(t) = Φt,0

(
x0 +

∫ t

0

b(s)Φ−1
s,0 ds+

∫ t

0

c(s)Φ−1
s,0 dW (s)

)
, (34)

where

Φt,0 = exp

(∫ t

0

a(s) ds

)
. (35)

We can now substitute the functions a(t), b(t), c(t) for the constants a, b, c and com-

7



pute the integrals, yielding

x(t) = x0e
at − b

a
(1− eat) + ceat

∫ t

0

e−as dW (s), (36)

for a ̸= 0. This expression is normally distributed with mean x0e
at − b

a
(1− eat). We

can calculate the variance,

Var(x(t)) = c2e2atE

[(∫ t

0

e−au dW (u)

)2
]
. (37)

We apply Itô’s isometry to get a deterministic integral.

Var(x) = c2e2atE
[∫ t

0

e−2au du

]
= c2e2atE

[
−1

2a
(e−2at − 1)

]
(38)

= c2e2at · −1

2a
(e−2at − 1) =

c2

2a
(e2at − 1) (39)

For the case a = 0, the SDE reduces to,

dx(t) = b dt+ c dW (t), (40)

which means x(t) is normally distributed with mean x0 + bt and variance c2t.

We can now extend Stern’s approach to SDEs.

Definition 4. A system of SDEs is said to be conditionally linear if every com-

ponent of the system has the form,

dxi(t) = (ai(x(t))xi(t) + bi(x(t))) dt+ ci(x(t)) dWi(t), (41)

where ai(x(t)), bi(x(t)), ci(x(t)) depend only on the components xj(t) for j ̸= i.

We define fi(x(t)) and f
(i)(x(t)) as before and we denote the exact h-time flow of

f (i) by φ
(i)
h . The j-th component is therefore given by,

φ
(i)
h,j(x) =


ψi if i = j and ai(x) ̸= 0

νi if i = j and ai(x) = 0

xj if i ̸= j

, (42)

where

ψi ∼ N(xie
ai(x)h − bi(x)

ai(x)
(1− eai(x)h),

c2i (x)

2ai(x)
(e2ai(x)h − 1)) (43)

νi ∼ N(xi + bi(x)h, c
2
i (x)h) (44)

8



2.5 Coordinate transforms for conditional linearity

Whilst the VDP is already conditionally linear, the remaining models of interest are

not conditionally linear. As such, we will perform a coordinate change which will

result in a conditionally linear system where Stern’s approach can be applied. All

three of the remaining models of interest are of the (deterministic) form,

d

(
v(t)

u(t)

)
=

(
g(v(t)) + ku(t)

a(v(t))u(t) + b(v(t))

)
dt, (45)

where g, a, b : R → R are non-linear functions and g ∈ C2(R). In other words, only

the second coordinate fulfills the criteria for being conditionally linear. León and

Samson proposed a coordinate change for the stochastic FHN in order to transform

the model into a stochastic damped oscillator [14]. We can apply a generalised

version of this coordinate change to transform this general model into a conditionally

linear form. Consider a new coordinate

y(t) := g(v(t)) + ku(t). (46)

Applying the chain rule, we have that

ẏ = v̇g′(v) + u̇k = yg′(v) + (a(v)u+ b(v))k (47)

= yg′(v) + (a(v)

(
y − g(v)

k

)
+ b(v))k = (g′(v) + a(v))y + (b(v)k − g(v)a(v)).

(48)

The means that the resulting system in (v, y) is

d

(
v(t)

y(t)

)
=

(
y(t)

(g′(v(t)) + a(v(t)))y(t) + (b(v(t))k − g(v(t))a(v(t)))

)
dt, (49)

which is conditionally linear. For a stochastic model of additive noise type, we can

proceed similarly. Our model is of the form

d

(
v(t)

u(t)

)
=

(
g(v(t)) + ku(t)

a(v(t))u(t) + b(v(t))

)
dt+

(
σ1 0

0 σ2

)
dW (t). (50)

We perform the same coordinate change y(t) = g(v(t)) + ku(t), but now proceed

using Itô’s lemma [10]. Itô’s lemma states that given an SDE of the form,

dX(t) = µ(t)dt+ Σ(t)dW (t), (51)
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whereX,µ : [0,∞) → Rn, Σ ∈ Rm×n positive semi-definite andW is them−dimensional

Wiener process, then given y(t,X), with y : [0,∞)× Rn → Rn, we have

dy(t,X) =

(
∂y

∂t
+ (∇Xy)

⊤µ(t) +
1

2
Tr[Σ⊤

t (HXy)Σ(t)]

)
dt+ (∇Xy)

⊤ΣtdW (t),

(52)

where ∇ represents the gradient operator, H represents the Hessian operator and

Tr represents the trace operator. Applying Itô’s lemma to x(t) = (v(t), u(t)) and

y(t) := y(x(t)) = g(v(t)) + ku(t), we have that

dy(t) =


(
g′(v(t))

k

)⊤(
y(t)

a(v(t))u(t) + b(v(t))

)
+

1

2
Tr

(σ1 0

0 σ2

)⊤(
g′′(v(t)) 0

0 0

)(
σ1 0

0 σ2

) dt

(53)

+

(
g′(v(t))

k

)⊤(
σ1 0

0 σ2

)
dW (t).

This simplifies down to

dy(t) =

{
[g′(v(t)) + a(v(t))]y(t) + [kb(v(t))− a(v(t))g(v(t)) +

1

2
σ2
1g

′′(v(t))]

}
dt

(54)

+ g′(v(t))σ1 dW1(t) + kσ2 dW2(t)

where W1,W2 are independent 1-dimensional Wiener processes. Using their inde-

pendence, we can combine these processes into a single term, leaving our expression

as

dy(t) = (g′(v(t)) + a(v(t)))y(t) + (kb(v(t))− a(v(t))g(v(t)) +
1

2
σ2
1g

′′(v(t))) dt (55)

+
√
(g′(v(t))σ1)2 + (kσ2)2 dW3(t),

where W3 is a 1-dimensional Wiener process. In our new coordinate system (v, y),

omitting t to simplify notation, the model has the conditionally linear form

d

(
v

y

)
=

(
y

(g′(v) + a(v))y + (kb(v)− a(v)g(v) + 1
2
σ2
1g

′′(v))

)
dt (56)

+

(
σ1 0

0
√
(g′(v)σ1)2 + (kσ2)2

)
dW (t),
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as in Definition 4, where now W = (W1,W3) is a 2-dimensional Wiener process and

its components are no longer independent.

2.6 Applications to parameter estimation

Definition 5. An SDE with additive noise of the form,

dX(t) = f(X(t)) dt+ Σ dW (t), (57)

where f : Rd → Rd and Σ ∈ Rd×d, is called hypoelliptic if ΣΣ⊤ is not of full rank

yet f is such that the transition probability admits a smooth density [2].

A component of X(t) is called smooth if the noise term does not enter directly into

its dynamics. A component is called rough if the noise term does enter directly. A

common scenario of interest occurs when one component of the state X(t) is smooth,

therefore yielding a degenerate matrix Σ, but a rough component enters into the

smooth component. In this scenario, the SDE is often hypoelliptic. We extend the

definition of transition probability to a discrete case.

Definition 6. The k−step transition probability of a numerical solution X̃(ti)

of the SDE above is,

P̃tk(A, x) := P(X̃(tk) ∈ A|X̃(0) = x) (58)

If κ ∈ N is the smallest natural such that the transition probability above has smooth

density, we say the method is κ−step hypoelliptic [2].

The 1-step transition probability plays an important role in the field of likelihood-

based parameter estimation [2]. A particular interest lies in the situation where

(58) corresponds to a multivariate normal distribution [2]. More explicitly, when

X̃(ti)|X̃(ti−1) is normally distributed. Buckwar et al proved that the canonical

splitting was 1-step hypoelliptic and therefore generated a well-defined parameter

estimator [2]. Euler-Maruyama has been proven to be 2-step hypoelliptic i.e. the

covariance matrix of X̃(ti)|X̃(ti−1) is degenerate [15]. Here we prove that under

the stochastic Stern approach, defined in Section 2.4, X̃(ti)|X̃(ti−1) only follows a

normal distribution under specific conditions [2].

Lemma 1. Consider a 2-d conditionally linear SDE of the form,

d

(
v(t)

u(t)

)
=

(
α1(u(t))v(t) + β1(u(t))

α2(v(t))u(t) + β2(v(t))

)
dt+

(
γ1 0

0 γ2

)
dW (t) (59)

Let X̃(ti) be the approximate solution at time-points ti under the stochastic Stern ap-
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proach (see Section 2.4) composed with Lie-Trotter. Then X̃(ti)|X̃(ti−1) is normally

distributed if α1 ≡ 0 and β1(u) is linear.

Proof. Given X̃(ti−1) = (vi−1, ui−1), then, following the flows given in Section 2.4,

we have that,

X̃(ti) =
(
φ
[1]
h ◦ φ[2]

h

)(vi−1

ui−1

)
= φ

[1]
h

(
vi−1

ξ

)
=

(
η

ξ

)
, (60)

where ξ ∼ N(µ, σ2) with

µ =

ui−1e
α2(vi−1)h − β2(vi−1)

α2(vi−1)
(1− eα2(vi−1)h) if α2(vi−1) ̸= 0

ui−1 + β2(vi−1)h if α2(vi−1) = 0
(61)

σ2 =


γ2
2

2α2(vi−1)
(e2α2(vi−1)h − 1) if α2(vi−1) ̸= 0

γ22h if α2(vi−1) = 0
(62)

and η|ξ, vi−1 ∼ N(π(ξ), κ2(ξ)) where,

π(ξ) =

vi−1e
α1(ξ)h − β1(ξ)

α1(ξ)
(1− eα1(ξ)h) if α1(ξ) ̸= 0

vi−1 + β1(ξ)h if α1(ξ) = 0
(63)

κ2(ξ) =


γ2
1

2α1(ξ)
(e2α1(ξ)h − 1) if α1(ξ) ̸= 0

γ21h if α1(ξ) = 0
(64)

We show now that η is only normally distributed under specific conditions. Recall

that the characteristic function of the normal distribution is given by,

ΦX∼N(µ,σ2)(t) = eitµ−
1
2
σ2t2 . (65)

Consider the characteristic function of η,

Φη(t) = E[eitη] = E[E[eitη|ξ]] = E[eitπ(ξ)−
1
2
κ2(ξ)t2 ] (66)

In the case that α1(ξ) ̸= 0, π(ξ) and κ2(ξ) are non-linear functions of ξ so Φη

cannot have the form given in (65) thus η does not follow a normal distribution. If

α1(ξ) = 0, then we have that κ2(ξ) = γ21h,

Φη(t) = e−
1
2
γ2
1ht

2E[eitπ(ξ)], (67)

and therefore, η is normally distributed in the case π(ξ) is linear i.e. β1(ξ) is a linear

function.

12



Furthermore consider the hypoelliptic case γ2 = 0, where u(t) is now a smooth

component. In this case, we have,

X̃(ti) =
(
φ
[1]
h ◦ φ[2]

h

)(vi−1

ui−1

)
=

(
η

µ

)
, (68)

where η|µ ∼ N(π(µ), κ2(µ)). In other words, the second component has variance 0

even though, in the true solution, noise would propagate through the rough compo-

nent v(t) into u(t). Thus, composing the flows in this order yields a method that is

not 1-step hypoelliptic.

3 Classical integrators

The most common class of integrators for ODEs are the so-called finite difference

methods. These methods work by approximating derivatives with finite differences,

thereby discretising the problem. The convergence of these methods is well studied,

but the method often have stability and convergence limitations when it comes to

stiff systems. For such systems, explicit finite difference methods often require very

small time-steps in order to maintain stability or to preserve the dynamics of the

systems in question, whilst implicit schemes are computational intractable in the

context of parameter estimation [2]. Due to their place as the standard in numerical

schemes of ODEs, we will use the forward Euler and fourth order Runge-Kutta

methods as the comparison point for the splitting integrators on the deterministic

models [6]. We will use the Euler-Maruyama scheme and its tamed version for

the stochastic variants of the models [13].

Consider again the initial value problem presented in Section 2,

dx(t) = f(x(t)) dt; x(0) = x0; t ∈ [0, T ], (69)

we define the following numerical schemes.

3.1 Forward Euler

One such explicit finite difference method is the so-called forward Euler (FE)

scheme. The method is given by the recursive formula

xn+1 = xn + hf(xn, tn), (70)

x0 = x(0). (71)

When f ∈ C1 and f, ∂f
∂x
, ∂f
∂t

are bounded in a neighbourhood of the solution, then

this method has order of convergence 1 [7].
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3.2 Fourth order Runge-Kutta

The “classical” Runge-Kutta method (RK4) is the most commonly used method

from the Runge-Kutta class of methods. It is an explicit method given by the formula

xn+1 = xn +
h

6
(k1 + 2k2 + 2k3 + k4), (72)

x0 = x(0), (73)

where

k1 = f(xn, tn), (74)

k2 = f(xn + h
k1
2
, tn +

h

2
) (75)

k3 = f(xn + h
k2
2
, tn +

h

2
) (76)

k4 = f(xn + hk3, tn + h). (77)

If f ∈ C4 and all its partial derivatives up to order 4 exist and are continuous, then

this method has order of convergence 4 [7].

3.3 Euler-Maruyama

Consider instead a SDE of the form,

dX(t) = a(X(t), t) dt + b(X(t), t) dW (t), (78)

where X : [0,∞) → Rd is an Itô process, a : Rd×[0,∞) → Rd, b : Rd
≥0×[0,∞) → Rd

and W is the standard d−dimensional Wiener process. Consider also an initial

condition X(0) = x0. We discretise time identically as before, such that tn = nh for

h > 0 and n ∈ N. We then recursively define our approximation as follows,

Xn+1 = Xn + a(Xn, tn)h+ b(Xn, tn)ξn, (79)

X0 = x0, (80)

where the ξn = (ξn1 , ξn2 , ..., ξnd
) ∈ Rd are vectors of independent, identically dis-

tributed random variables ξni
taken from the normal distribution with mean 0 and

variance h. If a, b are measurable, Lipschitz and satisfy a linear growth bound,

then the Euler-Maruyama scheme is weakly convergent with order 1 and strongly

convergent with order 0.5 [13].
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3.4 Tamed Euler-Maruyama

Hutzenthaler et al proved that the Euler-Maruyama scheme does not converge for

super-linearly growing coefficients [8]. This includes some of the models discussed

in the project. For this reason, we also consider the tamed Euler-Maruyama

scheme, given by

Xn+1 = Xn +
a(Xn, tn)h

1 + h||a(Xn, tn)||
+ b(Xn, tn)ξn, (81)

X0 = x0. (82)

where the ξn are as in the Euler-Maruyama scheme above. If a, b are measurable,

globally one-side Lipschitz and satisfy a polynomial growth bound, then the tamed

Euler-Maruyama scheme converges strongly with order 0.5 [9].

4 Application to neuronal models

4.1 Membrane potential and spiking

In spiking neuronal models, one component represents the membrane potential of

the neuron. When the membrane potential reaches a given threshold, a ‘spike’ or

action potential is released, which is the release of neural information. After the

action potential is released, the neuron returns to its resting potential, hence the

characteristic spiking or oscillatory behaviour expected in neuronal models.

4.2 The Van der Pol model

The VDP oscillator is given by the 2-dimensional system of first order ODEs,

d

(
x1(t)

x2(t)

)
=

(
x2(t)

ϵ(1− x21(t))x2(t)− x1(t)

)
dt, (83)

where ϵ ≥ 0 is a scalar parameter representing the strength of the damping in

the oscillator. The VDP oscillator has been used to model a range of phenomena

in biology and physics, most relevantly action potentials in the brain. The model

was extended to the FHN model of neurons. We consider the component x1(t) to

represent the action potential of a neuron at time t.
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4.2.1 The canonical splitting

We can apply the canonical splitting to the VDP model. The splitting is not unique,

but one example would be,

d

(
x1(t)

x2(t)

)
=

[(
0 1

−1 ϵ

)(
x1(t)

x2(t)

)
+

(
0

−ϵx1(t)2x2(t)

)]
dt. (84)

We therefore have

A =

(
0 1

−1 ϵ

)
; N(x1, x2) =

(
0

−ϵx21(t)x2(t)

)
. (85)

This therefore yields sub-problems,

dx[1](t) =

(
0 1

−1 ϵ

)
x[1](t) dt = Ax[1](t) dt (86)

dx[2](t) =

(
0

−ϵx[2]1 (t)2x
[2]
2 (t)

)
dt (87)

where x[1](t) = (x
[1]
1 (t), x

[1]
2 (t)) ∈ R2 and x[2](t) = (x

[2]
1 (t), x

[2]
2 (t)) ∈ R2. This is a

suitable splitting as the non-linear sub-equation is separable and therefore exactly

integrable. Given an initial condition x(0) = y = (y1, y2) ∈ R2, we can write down

the exact t−time flow of each of the sub-problems, starting from this initial condition
φ
[1]
t (y) = yeAt

φ
[2]
t (y) =

 y1

y2e
−ϵy21t

 . (88)

For some step size h > 0, these flows can be recomposed using the Lie-Trotter and

Strang compositions as in Section 3. Labelling x̃LT (ti−1) = xi−1 = (x
[1]
i−1, x

[2]
i−1), we

obtain explicit numerical schemes,

x̃LTi = (φ
[1]
h ◦ φ[2]

h )(xi−1) = eAh

(
x
[1]
i−1

x
[2]
i−1e

−ϵ(x
[1]
i−1)

2h

)
, (89)

x̃Si = (φ
[2]
h/2 ◦ φ

[1]
h ◦ φ[2]

h/2)(xi−1) = φ
[2]
h/2

(
eAh

(
x
[1]
i−1

x
[2]
i−1e

−ϵ(x
[1]
i−1)

2 h
2

))
. (90)
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4.2.2 Stern’s approach

Notice that the VDP system is conditionally linear as defined in Definition 1.

d

(
x1(t)

x2(t)

)
=

(
0 · x1(t) + x2(t)

ϵ(1− x21(t)) · x2(t) + (−x1(t))

)
. (91)

We can write down the functions ai, bi, from the definition of conditionally linear,

for this system

a1(x) = 0; b1(x) = x2, (92)

a2(x) = ϵ(1− x21); b2(x) = −x1. (93)

Again, considering an initial condition x(0) = y = (y1, y2) ∈ R2, we can write

down the exact t−time flow of each of the sub-problems, starting from this initial

condition, using the expressions from Section 3, being careful to apply the special

case as a1(x) = 0. This gives us t−time flows from y
φ
[1]
t (y) =

y1 + ty2

y2

 ,

φ
[2]
t (y) =

 y1

exp(tϵ(1− y21))y2 −
exp(tϵ(1−y21))−1

ϵ(1−y21)
y1

 .

(94)

Again, these flows can be recomposed with the Lie-Trotter and Strang compositions

to generating explicit numerical schemes

x̃LTi = (φ
[1]
h ◦ φ[2]

h )(xi−1) (95)

=

x[1]i−1 + h(exp(hϵ(1− (x
[1]
i−1)

2))x
[2]
i−1 −

exp(hϵ(1−(x
[1]
i−1)

2))−1

ϵ(1−(x
[1]
i−1)

2)
x
[1]
i−1)

exp(hϵ(1− (x
[1]
i−1)

2))x
[2]
i−1 −

exp(hϵ(1−(x
[1]
i−1)

2))−1

ϵ(1−(x
[1]
i−1)

2)
x
[1]
i−1

 , (96)

x̃Si = (φ
[2]
h/2 ◦ φ

[1]
h ◦ φ[2]

h/2)(xi−1) =

(
φ
[1]
h,1(x

[1]
i−1, φ

[2]
h/2,2(xi−1))

φ
[2]
h/2,2(φ

[1]
h,1(x

[1]
i−1, φ

[2]
h,2(xi−1)), (φ

[2]
h/2,2)(xi−1))

)
.

(97)
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4.2.3 Van der Pol with additive noise

In the stochastic setting, we include an additional term which converts our ODE

into an SDE,

d

(
x1(t)

x2(t)

)
=

(
x2(t)

ϵ(1− x1(t)
2)x2(t)− x1(t)

)
dt+

(
σ1 0

0 σ2

)
dW (t), (98)

where σ1, σ2 ≥ 0 and W is the standard 2-d Wiener process. We can use a similar

splitting to the deterministic case, including the additive noise in the linear sub-

equation,

dx[1](t) =

(
0 1

−1 ϵ

)
x[1](t) dt+

(
σ1 0

0 σ2

)
dW (t) (99)

dx[2](t) =

(
0

−ϵx[2]1 (t)2x
[2]
2 (t)

)
dt (100)

The t−time flow of the linear sub-equation is now given by the stochastic harmonic

oscillator, following the analysis in Section 2.2. The t−time flow of the second

sub-equation remains unchanged. Therefore, we have

φ
[1]
t (y) = yeAt + ξt, (101)

φ
[2]
t (y) =

(
y1

y2e
−ϵy21t

)
, (102)

with

A =

(
0 1

−1 ϵ

)
, (103)

and ξt ∼ N (0, C(t)). The expression for the covariance matrix C(t) is given in

Appendix C. Using these flows and a time-step h > 0, we can define the following

numerical schemes,

xLTi = (φ
[1]
h ◦ φ[2]

h )(xi−1) = eAh

(
x
[1]
i−1

x
[2]
i−1e

−ϵ(x
[1]
i−1)

2h

)
+ ξi−1, (104)

xSi = (φ
[2]
h/2 ◦ φ

[1]
h ◦ φ[2]

h/2)(xi−1) = φ
[2]
h/2

(
eAh

(
x
[1]
i−1

x
[2]
i−1e

−ϵ(x
[1]
i−1)

2 h
2

)
+ ξi−1

)
, (105)
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where ξi−1 ∼ N (0, C(h)). The Van der Pol oscillator with additive noise is a condi-

tionally linear SDE, as in Definition 4, with functions,

a1(x) = 0; b1(x) = x2 (106)

a2(x) = ϵ(1− x21); b2(x) = −x1 (107)

c2(x) = σ1; c2(x) = σ2 (108)

We can substitute these functions into the t−time flows given in Section 2.4 to

obtain flows, 
φ
[1]
t (y) =

ξt
y2

 ,

φ
[2]
t (y) =

y1
νt

 ,

(109)

where ξt ∼ N(y1 + y2t, σ
2
1t) and

νt ∼ N(y2 exp(ϵ(1−y21)t)+
y1

ϵ(1−y21)
(1−exp(ϵ(1−y1)2t)), σ2

2

2ϵ(1−y1)2
(exp(2ϵ(1−y21)t)−1)).

4.3 The FitzHugh-Nagumo model

The FHN model is given by the following 2-d system of first-order ODEs

d

(
v(t)

u(t)

)
=

(
1
ϵ
(v(t)− v(t)3 − u(t))

γv(t)− u(t) + β

)
dt. (110)

The first component, v(t), models the membrane potential of the neuron at time t

whilst the second component u(t) is a recovery variable modelling ion channel kinet-

ics [2]. The parameter ϵ > 0 represents the timescale separation of the components.

When the membrane potential, v(t), crosses a certain threshold, a spike is generated.

β ≥ 0 controls the position of the spike whilst γ > 0 controls the duration [2].

4.3.1 The canonical splitting

We can apply the canonical splitting to the FHN model as in Buckwar et al [2].

d

(
v(t)

u(t)

)
=

(
0 −1

ϵ

γ −1

)(
v(t)

u(t)

)
+

(
1
ϵ
(v(t)− v3(t))

β

)
dt. (111)
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We therefore have

A =

(
0 −1

ϵ

γ −1

)
; N(v, u) =

(
1
ϵ
(v(t)− v3(t))

β

)
. (112)

This yields sub-problems

dx[1](t) =

(
0 −1

ϵ

γ −1

)
x[1](t) dt (113)

dx[2](t) =

(
1
ϵ
(v[2](t)− v[2]

3
(t))

β

)
dt (114)

where x[1](t) = (v[1](t), u[1](t)) ∈ R2 and x[2](t) = (v[2](t), u[2](t)) ∈ R2. As in

the VDP model, the non-linear sub-equation is separable and therefore integrable.

Given an initial condition x(0) = x0 = (v0, u0) ∈ R2, we can write down the exact

t−time flow of each of the sub-problems, starting from x0.
φ
[1]
t (x0) = x0e

At,

φ
[2]
t (x0) =

 v0√
e−2t/ϵ+v20(1−e−2t/ϵ)

βt+ u0

 ,
(115)

where,

A =

(
0 −1

ϵ

γ −1

)
. (116)

Using the flows and a time-step h > 0, we apply the Lie-Trotter and Strang compo-

sitions to give the following explicit numerical schemes,

xLTi = (φ
[1]
h ◦ φ[2]

h )(xi−1) = eAh

(
vi−1√

e−2h/ϵ+v2i−1(1−e−2h/ϵ)

βh+ ui−1

)
, (117)

xSi = (φ
[2]
h/2 ◦ φ

[1]
h ◦ φ[2]

h/2)(xi−1) = φ
[2]
h/2

(
eAh

(
vi−1√

e−h/ϵ+v2i−1(1−e−h/ϵ)

βh
2
+ ui−1

))
, (118)

where xi−1 = (vi−1, ui−1).

4.3.2 Coordinate change and Stern’s approach

The FHN model is not conditionally linear due to the cubic term in the first com-

ponent. However, it is in the general form discussed in Section 2.5 with functions
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and constant given by,

g(v) =
1

ϵ
(v(t)− v3(t)), k = −1

ϵ
, a(v) = −1, b(v) = γv(t) + β. (119)

Applying the coordinate change proposed in Section 2.5, we get the resulting con-

ditionally linear system in (v, y) where y(t) is our new coordinate y(t) = g(v(t)) +

ku(t) :.

d

(
v(t)

y(t)

)
=

(
y(t)

(1
ϵ
+ 1− 3

ϵ
v2(t))y − 1

ϵ
(γ + 1)v(t) + 1

ϵ
v3(t)− β

ϵ

)
dt (120)

Whilst we perform this linearisation in order to apply Stern’s method, we can also

apply the canonical splitting or classical integrators to the resulting system as well.

This helps isolate any error in the numerical solution that may arise from the coor-

dinate change. First, we apply the canonical splitting to this linearised system. A

suitable splitting would be

d

(
v(t)

y(t)

)
=

(
0 1

−1
ϵ
(γ + 1) (1

ϵ
+ 1)

)(
v(t)

y(t)

)
(121)

+

(
0

−3
ϵ
v2(t)y(t) + 1

ϵ
v3(t)− β

ϵ

)
dt. (122)

Again, the non-linear part yields a separable sub-equation. Proceeding as before,

from an initial condition x(0) = x0 = (v0, y0) ∈ R2, we get t−time flows
φ
[1]
t (x0) = x0e

At,

φ
[2]
t (x0) =

 v0

(y0 +
β
3v20

+ v0)e
− 3

ϵ
v20t + β

3v20
− v0

3

 ,
(123)

where

A =

(
0 1

−1
ϵ
(γ + 1) (1

ϵ
+ 1)

)
. (124)
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We recompose these flows with the Lie-Trotter and Strang compositions to obtain

explicit numerical schemes

xLTi = (φ
[1]
h ◦ φ[2]

h )(xi−1) = eAh

(
vi−1

(yi−1 +
β

3v2i−1
+ v0)e

− 3
ϵ
v2i−1h + β

3v2i−1
− vi−1

3

)
, (125)

xSi = (φ
[2]
h/2 ◦ φ

[1]
h ◦ φ[2]

h/2)(xi−1) = φ
[2]
h/2

(
eAh

(
vi−1

(yi−1 +
β

3v2i−1
+ v0)e

− 3
ϵ
v2i−1

h
2 + β

3v2i−1
− vi−1

3

))
,

(126)

where xi−1 = (vi−1, yi−1).

We can now use the Stern approach to obtain numerical schemes for this condition-

ally linear version of the FHN. The linearised FHN has functions

a1(y) = 0; b1(y) = y (127)

a2(v) =
1

ϵ
+ 1− 3

ϵ
v2; b2(v) = −1

ϵ
(γ + 1)v +

1

ϵ
v3 − β

ϵ
(128)

as in Definition 1. The formulas in Section 2.3 give us t−time flows from an initial

condition x0 = (v0, y0),
φ
[1]
t (x0) =

v0 + ty0

y0

 ,

φ
[2]
t (x0) =

 v0

exp(t(1
ϵ
+ 1− 3

ϵ
v20))y0 +

exp(t( 1
ϵ
+1− 3

ϵ
v20))−1

( 1
ϵ
+1− 3

ϵ
v20)

(−1
ϵ
(γ + 1)v0 +

1
ϵ
v30 −

β
ϵ
)

 .

(129)

Again, these flows can be recomposed using the Lie-Trotter and Strang compositions

and a time-step h > 0 to give explicit numerical schemes

xLTi = (φ
[1]
h ◦ φ[2]

h )(xi−1) =

(
vi−1 + hφ

[2]
h,2(xi−1)

φ
[2]
h,2(xi−1)

)
, (130)

xSi = (φ
[2]
h/2 ◦ φ

[1]
h ◦ φ[2]

h/2)(xi−1) =

(
φ
[1]
h,1(x

[1]
i−1, φ

[2]
h/2,2(xi−1))

φ
[2]
h/2,2(φ

[1]
h,1(x

[1]
i−1, φ

[2]
h,2(xi−1)), (φ

[2]
h/2,2)(xi−1))

)
.

(131)
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4.3.3 FitzHugh-Nagumo with additive noise

In the stochastic setting, we again include an additive noise term which yields the

SDE

d

(
v(t)

u(t)

)
=

(
1
ϵ
(v(t)− v(t)3 − u(t))

γv(t)− u(t) + β

)
dt+

(
σ1 0

0 σ2

)
dW (t), (132)

where σ1, σ2 ≥ 0 and W is the standard 2-d Wiener process. Repeating the analysis

from Buckwar et al [2], we use a similar splitting to the deterministic case but again

including the additive noise in the linear sub-equation yielding sub-problems

dx[1](t) =

(
0 −1

ϵ

γ −1

)
x[1](t) dt+

(
σ1 0

0 σ2

)
dW (t), (133)

dx[2](t) =

(
1
ϵ
(v[2](t)− v[2]

3
(t))

β

)
dt (134)

where x[1](t) = (v[1](t), u[1](t)) ∈ R2 and x[2](t) = (v[2](t), u[2](t)) ∈ R2. Following

the analysis in Section 2.2, we get flows,
φ
[1]
t (x0) = x0e

At + ξt

φ
[2]
t (x0) =

 v0√
e−2t/ϵ+v20(1−e−2t/ϵ)

βt+ u0

 .
(135)

where ξt ∼ N (0, C(t)), x0 = (v0, u0) and

A =

(
0 −1

ϵ

γ −1

)
. (136)

The expression for the covariance matrix C(t) is given in Appendix C. Using these

flows and a time-step h > 0, we can define the following numerical schemes

xLTi = (φ
[1]
h ◦ φ[2]

h )(xi−1) = eAh

(
vi−1√

e−2h/ϵ+v2i−1(1−e−2h/ϵ)

βh+ ui−1

)
+ ξi−1, (137)

xSi = (φ
[2]
h/2 ◦ φ

[1]
h ◦ φ[2]

h/2)(xi−1) = φ
[2]
h/2

(
eAh

(
vi−1√

e−h/ϵ+v2i−1(1−e−h/ϵ)

β h
2
+ ui−1

)
+ ξi−1

)
,

(138)
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where ξi−1 ∼ N (0, C(h)). Using the stochastic version of the coordinate change

proposed in Section 2.5 yields the SDE

d

(
v(t)

y(t)

)
=

(
y(t)

1
ϵ
(y(t)(1− ϵ− 3v2(t))− v(t)(γ − 1 + 3σ2

1)− v(t)3 − β)

)
dt (139)

+

(
σ1 0

0

√
σ2
1

ϵ2
(1− 3v2(t))2 +

σ2
2

ϵ2

)
dW (t).

Following Definition 4, the conditionally linearised FHN with additive noise is a

conditionally linear SDE in (v, y) with functions,

a1(y) = 0; a2(v) =
1

ϵ
(1− ϵ− 3v2) (140)

b1(y) = y; b2(v) = −1

ϵ
((γ − 1 + 3σ2

1)v + v3 + β) (141)

c1(y) = σ1; c2(v) =

√
σ2
1

ϵ2
(1− 3v2)2 +

σ2
2

ϵ2
(142)

We can substitute these functions into the t−time flows given in Section 2.4, starting

at x0 = (v0, y0) to obtain flows
φ
[1]
t (x0) =

ξt
y0

 ,

φ
[2]
t (x0) =

v0
νt

 ,

(143)

where ξt ∼ N(v0 + y0t, σ
2
1t) and

νt ∼ N(y0 exp(
1
ϵ
(1−ϵ−3v20)t)+

v0(γ−1+3σ2
1)+v30+β

1−ϵ−3v20
(1−exp(1

ϵ
(1−ϵ−3v20)t)),

σ2
1(1−3v20)

2+σ2
2

2ϵ(1−ϵ−3v20)
(exp(2t

ϵ
(1−

ϵ− 3v20)− 1).

4.4 The Izhikevich model

The Izhikevich (IZ) model is another 2-d spiking neuron model but with an auxiliary

after-spike reset [12]. The model is given by the 2-d system of ODEs

d

(
v(t)

u(t)

)
=

(
av2(t) + bv(t) + c+ du(t) + fI

α(βv(t)− u(t))

)
dt (144)

24



with a reset condition,

If v ≥ 30

v → θ (145)

u→ u+ δ. (146)

As in the FHN, v(t) represents the membrane potential and u(t) is a recovery variable

modelling ion channel kinetics [12]. Here a, b, c, d, f are considered as parameters.

Izhikevich sets these parameters to constant values that keep the membrane poten-

tial and spike timescale in the correct order of magnitude but we consider them

parameters for greater clarity in the mathematical analysis [11, 12]. α controls the

timescale of oscillations in u(t) whilst β controls the coupling between v(t) and u(t)

i.e. β controls the sensitivity of u to fluctuations in v. θ represents the after-spike

resting potential of the neuron, δ models the increment in the after-spike reset in

u and I represents an input current [12]. We can apply the canonical splitting to

this model following the analysis in Section 2.2. We can also perform the coordinate

change proposed in Section 2.5 to obtain a conditionally linearised version of the IZ

model. As this analysis is somewhat similar to that performed in Sections 4.2 & 4.3,

and for the sake of space, it is included in the Appendix A.1.

4.5 The adaptive exponential integrate-and-fire model

The AdEx model is another 2-d spiking neuron model with an auxiliary after-spike

reset [1]. The model is given by the 2-d system of ODEs

d

(
v(t)

w(t)

)
=

(
a exp(v(t)

c
) + dv(t) + fw(t) + gI

jv(t) + lw(t) + k

)
dt (147)

with a reset condition,

If v ≥ 18

v → θ (148)

w → w + δ. (149)

Again v(t) represents the membrane potential whilst w(t) represents the adaptation

current [1]. In this project, we have rearranged the model into its most rudimen-

tary mathematical form to support clarity in the mathematical operations and to

facilitate comparison to the other models. Due to this, the new parameters are

composites of the original biologically relevant parameters. One can see Brette and

Gerstner’s original paper for a full description of the original parameters and their
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biological relevance [1]. The analysis of this model is included in Appendix A.2.

5 Numerical experiments

5.1 Deterministic models

5.1.1 The “stiff” Van der Pol oscillator

When ϵ ≫ 1 in the VDP, it is known as “stiff” [4]. Typically of explicit schemes

a very small time-step is needed to preserve the oscillatory dynamics [3]. Here we

investigate the performance of the numerical schemes with ϵ = 50. Figure 4 shows

the x1 trajectories under the various numerical schemes against a reference solution

calculated using RK4 with h = 10−5. We focus on the first component as it models

the membrane potential and has characteristic spiking behaviour. Figure 4 shows

Figure 4: Stiff VDP: Plot of the x1 component calculated with numerical schemes against
reference solution with ϵ = 50, time-step h = 0.01 and initial condition (x0, y0) = (0.5, 0)

that for this relatively large time step both RK4, defined in Section 3.2, and Stern’s

approach, for both Lie-Trotter (LT) and Strang (S) compositions, exhibit the correct
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oscillatory dynamics for the x1 component. The canonical splitting shows spiking

behaviour but out of phase with the reference solution. Forward Euler, defined in

Section 3.1, fails to converge.

To investigate the behaviour for smaller time-steps, we compute the quadratic loss

between a numerical solution and the reference solution.

Definition 7. Given the reference solution X(t) and an approximate solution X̃(ti)

at discrete time points ti for i = 1, ..., n, we define the quadratic loss (QL) to

X(t) as,

QL(X̃) :=
1

n

√
Σn

i=1(X(ti)− X̃(ti))2 (150)

The quadratic loss is 1
n
L2 norm of the difference between the solutions as a vector.

Figure 5 shows this quadratic loss for the various numerical schemes at a range of

decreasing time-steps for the x1 component. It shows that for smaller time-steps, the

Figure 5: Stiff VDP: Quadratic loss to reference solution for various time-steps

Lie-Trotter and Strang compositions have the same performance for the canonical

splitting but there is a disparity between the two composition methods in Stern’s

approach. RK4, the canonical splitting methods and Stern’s approach with Strang

all have similar QL values. Again, the Forward Euler performs poorly, having the

highest QL at each time-step.

5.1.2 The FitzHugh-Nagumo model

Under suitable parameter conditions, the FHN has a stable limit cycle [16]. We will

investigate the performance of the numerical schemes in preserving this limit cycle

mirroring some of the analysis Chen et al performed for VDP [3]. Figure 6 shows
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the (v, u) plane under the different numerical schemes for increasing time-steps. For

each of the splitting methods, we use the Strang composition.

Remark 3. In the following plots, Canonical Linearised Splitting (CLS) will refer

to the conditionally linearised version of a model being solved with the canonical

splitting, as applied to FHN in Section 4.3.2.

Clearly, RK4 and the canonical splitting for the original system best preserve the

limit cycles for the larger time-steps. The two schemes that use the linearised system,

Stern’s approach and the CLS, preserve some of the structure, but not for the larger

time-steps. Forward Euler again performs the worst, only preserving oscillatory

dynamics for small time steps.

Figure 7 show that RK4 and the splitting approaches have similar QL for a range of

small time steps. We examine these well-performing methods for larger time-steps to

see when a disparity occurs. Figure 8 shows that, of these well-performing methods,

when composed with the Strang composition, the canonical splitting has the lowest

QL.

5.1.3 The Izhikevich model

The IZ model varies drastically from the two “oscillatory models” studied earlier.

It has a spike-reset condition that can create issues with traditional numerical in-

tegration [19]. There are also no existing results of splitting integrators for models

of this type. Figure 9 shows IZ trajectories computed with a relatively large time

step of h = 5 × 10−2. Clearly, we can see that the classical integrators perform

the best, preserving the phase of the spikes, but not perfect amplitude. The Strang

approach with the canonical splitting has the correct frequency but is out of phase.

The Lie-Trotter approach exhibits “chattering” behaviour (a feature of the model

not associated with this parameter setting) [12]. For the conditionally linearised

version of the system, the Lie-Trotter composition, for both the Stern and canon-

ical splitting approaches, exploded in finite time and hence is not displayed - this

can occur for weak numerical methods due to bifurcations in the model [11]. To

investigate differences between the splitting approaches, Figure 10 shows the same

schemes but for a time step of h = 5 × 10−4. In this figure, we can see that the

classical integrators and canonical splitting both preserve the frequency and ampli-

tude of the spikes. For the linearised system, only the Strang composition show

the correct behaviour. This suggests that some numerical approaches may be more

robust to the coordinate change in the presence of boundary conditions. Figure

11 shows the trajectories grouped according to which method is used to compose

solutions rather than which splitting. It shows that only the Strang approach yields

the same, and correct, trajectory for both the original and the linearised system.
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Figure 6: FHN limit cycles in (v, u) with ϵ = 0.05;β = 0.1; γ = 20; (v0, u0) = (2, 0).

Figure 7: FHN: Quadratic loss to reference solution for various time-steps
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Figure 8: FHN: Quadratic loss to reference solution for large time steps

This provides some evidence of the advantages of splitting approaches even for the

spike-reset models.

Comparisons of trajectories for different time-steps are difficult for spike-reset mod-

els due to the first passage time problem. The first passage time (FPT) is the

first time t at which the trajectory crosses the threshold and gets reset. In a numer-

ical solution, the FPT depends on the time-step, and as such the entire trajectory

is effected. An error is therefore introduced into the numerical solution that is not

due to the approximate integration. In order to combat this issue, more complex

algorithms are needed such as those presented by Stewart and Bair [19]. These algo-

rithms involve numerically calculating the exact spike time rather than resetting at

the discrete time-steps [19]. Further work could be done to combine this approach

with the splitting methods, but the resulting method could be computational in-

tractable for inference purposes.

5.1.4 The adaptive exponential integrate-and-fire model

The AdEx model is structured similarly to the IZ model with a spike-reset. As such,

some similar behaviour can be seen and similar problems arise. Figure 12 shows

some trajectories of the AdEx model calculated with various numerical methods.

The classical integrators and canonical splitting methods are run with a time-step

of h = 5× 10−4 and exhibit the correct spiking behaviour with the same frequency

and amplitude as the reference solution (calculated with RK4 and h = 5 × 10−5).

The splitting approaches on the conditionally linear version of the system do not

perform as well for the larger time-step and so the figure shows trajectories calculated
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Figure 9: IZ: trajectories compared with reference solution for various numerical methods
run with time-step h = 0.05 and parameters a = 0.04; b = 5; c = 140; d = −1;α =
0.02;β = 0.2; I = 10; f = 1; (v0, u0) = (−65,−13).

using a time-step of h = 5× 10−5. The Lie-Trotter compositions either exploded in

finite time or did not converge. The Strang compositions are out of phase with the

reference solution. From Figure 12, one can see that the trajectories line up closely

before the first spike-reset, indicating that the FPT problem also plays a role here.

The disparity between the schemes that use the original system and those that use

the linearised system suggest that the AdEx model, most probably due to its reset

condition, is highly sensitive to the coordinate transformation.
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Figure 10: IZ: trajectories compared with reference solution for time-step h = 0.0005

5.2 Stochastic models

For a stochastic model, the time between two adjacent spikes varies from path

to path. To compare the performance of the numerical methods for the stochas-

tic models, we will consider the distribution of this inter-spike interval (ISI) for

a given interval. Over 500 iterations, we use the normal kernel density approxi-

mation (see appendix B), to calculate an approximate distribution of the ISIj for

j ∈ {1, 2, 3, 4, 5}, and then calculate the absolute integral loss between this den-

sity curve and a reference distribution. The absolute integral loss is the area

between the two curves in absolute value. A smaller absolute integral loss means

that the distribution of the ISI matches more closely with the reference solution and

therefore that the numerical method has better preserved a key feature of the model.

The reference solution in each case is computed using the mean-square convergent
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Figure 11: IZ: numerical schemes with time-step h = 0.0005 comparing the original system
to the linearised system.

tamed Euler-Maruyama scheme, as defined in Section 3.4, and a small time-step.

5.2.1 The “non-stiff” Van der Pol oscillator

If 0 < ϵ ≪ 1, the VDP model is called “non-stiff”. For this range of ϵ values,

the VDP has a circular limit cycle of radius 2 centered at the origin. This is a

key feature that we wish to preserve in a numerical solution. Figure 13 shows paths

simulated using different methods for the stochastic VDP with ϵ = 0.05 and starting

position (0, 0). A well-performing numerical method will preserve the radius of the

limit cycle for larger time steps. There is some qualitative evidence from Figure

13 that the splitting approaches, particularly the canonical splitting, preserve this

amplitude more robustly than the Euler-Maruyama schemes, defined in Section 3.3,

as the time-step increases.
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Figure 12: AdEx:trajectories compared with reference solution for various numerical meth-
ods for parameters a = 0.2135; c = 2; d = −0.1068; e = −7.5374; f = −0.0356; g =
0.0356; j = 0.02778; k = 1.9611; l = −0.0694; I = 350(v0, u0) = (−70.6,−13)
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Figure 13: VDP: phase portraits for the stochastic VDP model in (x, y) space showing
limit cycle of true radius 2. The splitting methods are composed with Strang.
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Figure 14: FHN: phase portraits in (v, u) for various numerical schemes, showing the
relative preservation of the limit cycle. The Strang composition is used for the splitting
methods.

5.2.2 The Fitz-Hugh Nagumo model

As seen in the deterministic case, the FHN has limit cycle behaviour [16]. Figure

14 shows phase portraits of paths simulated from the stochastic FHN with various

numerical schemes. The result here is even clearer than for the stochastic VDP

model. The splitting approaches preserve the limit cycle behavior better than the

Euler-Maruyama schemes for larger time-steps. Furthermore, the canonical splitting

out-performs Stern’s approach for these time-steps. Figure 15 shows the absolute

integral loss between the inter-spike-interval (ISI) distribution densities, for the first

5 spikes. These are calculated with 500 samples and compared against a reference

distribution, obtained by using the tamed Euler Maruyama scheme with a time step

of h = 2 × 10−4 for 500 iterations. The spike threshold was chosen to be v(t) ≥ 1.
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Figure 15 shows the absolute integral loss for each of the first five spikes across a

range of time-steps. The Stern approach has a significantly higher loss than both the

canonical splitting and the Euler-Maruyama scheme. The Euler-Maruyama method

was not convergent for the larger time-steps, hence the integral loss is only plotted

for the smaller time-steps. The integral loss is comparable for the canonical splitting

and the Euler-Maruyama scheme for small time-steps, but as the canonical splitting

is the only method with low loss for all time-steps, it can be regarded as the most

robust method.

5.2.3 The Izhikevich model

For the stochastic IZ model, the distribution of the ISI is an important property we

wish to preserve. Moreover, this is an interesting experiment as the FPT problem

does not play a role, as we are interested in the interval between spikes as opposed

to the exact spiking time. Again, we compute the absolute integral loss between the

various methods for the IZ model with a reference density. The reference density

was computed with tamed Euler-Maruyama and a time-step of h = 2×10−5. Figure

16 shows the absolute integral loss between reference and the approximate densities

for the IZ model at a range of different time-steps. Here it is clear that the Stern

approach does not behave as expected or desired. The loss does not decrease with

time-step meaning that the distributions of the ISI under this numerical scheme

are not approaching the reference distributions. A problem with the initial spike

meant that data for the Stern approach was not included for Spike 1. This weak

performance is most likely due to the problems with changing coordinates in a spike-

reset system as seen with the results for the deterministic AdEx model in Figure

12. The Euler-Maruyama and canonical splitting methods seem to have comparable

loss values.
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Figure 15: FHN: Absolute integral loss between reference ISI density and the density
obtained from the studied methods for the first 5 spikes.
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Figure 16: IZ: Absolute integral loss between reference ISI density and the density ob-
tained from the studied methods for the first 5 spikes.
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6 Discussion

In summary, this project has studied the application of splitting methods to four de-

terministic and stochastic neuronal models (VDP, FHN, IZ, AdEx). Building off of

work done by Chen et al for conditionally linear ODEs and Buckwar et al for semi-

linear SDEs, we have considered the “canonical” approach of splitting the model

into a linear and a non-linear part, as well as a splitting for conditionally linear

systems [2][3]. Generalising a coordinate change proposed by León and Samson [14],

we have been able to extend Stern’s approach to models that are not conditionally

linear. We have also proposed an extension to Stern’s approach so that it can be

applied to SDEs. This method was proved to have a normally distributed 1-step

transition probability under specific conditions, a property useful for applications

in parameter inference [2]. Furthermore, it was shown that the 1-step hypoellip-

ticity can depend on the order of composition of the flows. The ergodicity and

mean-square convergence of these methods remain unproved. The numerical results

provided some evidence that the canonical splitting preserved spiking dynamics for

larger time steps for the FHN model better than classical integrators and the alter-

native splitting approaches. For the stiff VDP model, Stern’s approach proved to be

the most robust to time-step changes, reinforcing previous results from Chen et al

[3]. For the spike-reset models (IZ, AdEx) only the Strang composition was resistant

to coordinate changes in the IZ, and the canonical splitting preserved the spiking

dynamics of the AdEx. However, all methods proved not robust for larger time-

steps due to the first passage time problem. Stewart and Bair propose a method of

reducing this error by numerically approximating the exact spike-time and integrat-

ing this information to reset more accurately [19]. Further work could be done to

combine this approach with the splitting methods to better analyse the properties of

the splitting integrators in the absense of the reset error and to produce high accu-

racy schemes. However, this could increase computational cost making the methods

intractable for parameter inference. Furthermore, numerical results showed that

the coordinate change produced some unexpected behaviour in the spike-reset mod-

els. The resets in these numerical implementations were performed in the original

(non-transformed) coordinates as the unexpected behaviours were worse when the

reset conditions were transformed along with the system. This phenomenon could

be investigated theoretically to see if there is a mathematical basis for this effect.

Finally, this project neglects to study the computational efficiency of the various

methods. Preliminary investigations suggest a large disparity between the splitting

methods, with Stern’s approach being faster than the canonical splitting. Numerical

experiments could obtain results about how the error of these methods scales with

machine time, an important metric for spiking network simulations.
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A Application of the splitting methods to the spike-reset

models

A.1 The Izhikevich Model

The Izhikevich (IZ) model is is given by the 2-d system of ODEs,

d

(
v(t)

u(t)

)
=

(
av2(t) + bv(t) + c+ du(t) + fI

α(βv(t)− u(t))

)
dt, (151)

with a reset condition,

If v ≥ 30

v → θ (152)

u→ u+ δ. (153)

A.1.1 The canonical splitting

We can apply the canonical splitting to the IZ model with the following, non-unique,

approach,

d

(
v(t)

u(t)

)
=

(
b d

αβ −α

)(
v(t)

u(t)

)
+

(
av(t)2 + c+ fI

0

)
dt. (154)

Following the analysis in Section 2.2, we therefore have,

A =

(
b d

αβ −α

)
; N(v, u) =

(
av(t)2 + c+ fI

0

)
. (155)

This therefore yields sub-problems,

dx[1](t) =

(
b d

αβ −α

)
x[1](t) dt (156)

dx[2](t) =

(
av[2](t)2 + c+ fI

0

)
dt (157)

where x[1](t) = (v[1](t), u[1](t)) ∈ R2 and x[2](t) = (v[2](t), u[2](t)) ∈ R2. The non-

linear sub-equation is separable and therefore integrable. Proceeding as before we
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get t−time flows,
φ
[1]
t (x0) = x0e

At,

φ
[2]
t (x0) =

√η
a
tan(

√
ηat+ arctan(

√
a
η
v0))

u0

 ,
(158)

where η = c+ fI. We recompose these flows with Lie-Trotter and Strang composi-

tions to obtain explicit numerical schemes,

xLTi = (φ
[1]
h ◦ φ[2]

h )(xi−1) = eAh

(√
η
a
tan(

√
ηah+ arctan(

√
a
η
vi−1))

ui−1

)
, (159)

xSi = (φ
[2]
h/2 ◦ φ

[1]
h ◦ φ[2]

h/2)(xi−1) (160)

= φ
[2]
h/2

(
eAh

(√
η
a
tan(

√
ηah

2
+ arctan(

√
a
η
vi−1))

ui−1

))
, (161)

where xi−1 = (vi−1, ui−1).

A.1.2 Coordinate change and Stern’s approach

Again this model is not conditionally linear but is in the form described in Section

2.5. In this case the functions and constants are,

g(v) = av2 + bv + c+ fI, (162)

k = d, (163)

a(v) = −α, (164)

b(v) = αβv. (165)

Applying the coordinate change y(t) = g(v(t))+ku(t), yields the conditionally linear

system,

d

(
v(t)

y(t)

)
=

(
y(t)

(2av(t) + b− α)y(t) + (dαβv(t) + α(av2(t) + bv(t) + c+ fI))

)
dt

(166)

The spike reset condition can either be transformed under the coordinate change

such that the reset is defined in the coordinates (v, y),

v → θ (167)

y → y + dδ, (168)
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or a coordinate switch can be performed in each step of the numerical implementa-

tion to perform the reset in the original coordinates (v, u). The (v, u) reset proved

to be far more effective at the implementation level.

Again, we apply the canonical splitting to the conditionally linear version of the

system. A suitable splitting would be,

d

(
v(t)

y(t)

)
=

(
0 1

dαβ + αb b− α

)(
v(t)

y(t)

)
+

(
0

2av(t)y(t) + αav2(t) + αc+ αfI

)
dt.

(169)

Again, the non-linear part yields a separable sub-equation. Proceeding as before,

from an initial condition x(0) = x0 = (v0, y0) ∈ R2, we get t−time flows,
φ
[1]
t (x0) = x0e

At,

φ
[2]
t (x0) =

 v0
1

2av0
[exp(2av0t)(2av0y0) + (exp(2av0t)− 1)(αav20 + αc+ αfI)]

 ,

(170)

with,

A =

(
0 1

dαβ + αb b− α

)
(171)

We can then obtain explicit numerical schemes,

xLTi = (φ
[1]
h ◦ φ[2]

h )(xi−1) (172)

= eAh

(
vi−1

1
2avi−1

[
exp(2avi−1h)(2avi−1yi−1) + (exp(2avi−1h)− 1)(αav2i−1 + αc+ αfI)

]) ,
(173)

xSi = (φ
[2]
h/2 ◦ φ

[1]
h ◦ φ[2]

h/2)(xi−1) (174)

= φ
[2]
h/2

(
eAh

(
vi−1

1
2avi−1

[
exp(2avi−1

h
2
)(2avi−1yi−1) + (exp(2avi−1

h
2
)− 1)(αav2i−1 + αc+ αfI)

])) ,
(175)

where xi−1 = (vi−1, yi−1). This conditionally linear system has functions

a1(y) = 0; b1(y) = y (176)

a2(v) = 2av + b− α; b2(v) = dαβv + α(av2 + bv + c+ fI) (177)
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from Definition 1. These give us t−time flows from x0,
φ
[1]
t (x0) =

v0 + ty0

y0

 ,

φ
[2]
t (x0) =

 v0

exp(t(2av0 + b− α))y0 +
exp(t(2av0+b−α))−1

t(2av0+b−α)
t(av20 + (αβd+ b)v0 + c+ fI)

 .

(178)

Again, these flows can be recomposed using the Lie-Trotter and Strang compositions

and a time-step h > 0 to give explicit numerical schemes,

xLTi = (φ
[1]
h ◦ φ[2]

h )(xi−1) =

(
vi−1 + hφ

[2]
h,2(xi−1)

φ
[2]
h,2(xi−1)

)
, (179)

xSi = (φ
[2]
h/2 ◦ φ

[1]
h ◦ φ[2]

h/2)(xi−1) =

(
φ
[1]
h,1(x

[1]
i−1, φ

[2]
h/2,2(xi−1))

φ
[2]
h/2,2(φ

[1]
h,1(x

[1]
i−1, φ

[2]
h,2(xi−1)), (φ

[2]
h/2,2)(xi−1))

)
.

(180)

A.1.3 Izhikevich model with additive noise

As before, we now include an additive noise term which yields the SDE,

d

(
v(t)

u(t)

)
=

(
av2(t) + bv(t) + c+ du(t) + fI

α(βv(t)− u(t))

)
dt+

(
σ1 0

0 σ2

)
dW (t), (181)

where σ1, σ2 ≥ 0 andW is the 2-d Wiener process. Proceeding as before, we generate

sub-problems,

dx[1](t) =

(
b d

αβ −α

)
x[1](t)dt+

(
σ1 0

0 σ2

)
dW (t), (182)

dx[2](t) =

(
av[2](t)2 + c+ fI

0

)
dt (183)

where x[1](t) = (v[1](t), u[1](t)) ∈ R2 and x[2](t) = (v[2](t), u[2](t)) ∈ R2. Proceeding

as before we get t−time flows,
φ
[1]
t (x0) = x0e

At + ξt,

φ
[2]
t (x0) =

√η
a
tan(

√
ηat+ arctan(

√
a
η
v0))

y0

 ,
(184)
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where η = c+ fI, ξt ∼ N (0, C(t)) and,

A =

(
b d

αβ −α

)
. (185)

C(t) is defined in Section 2.2 and explained further in Appendix C, but the expres-

sion is very long and not included. Using these flows and a time-step h > 0, we can

define the following numerical schemes,

xLTi = (φ
[1]
h ◦ φ[2]

h )(xi−1) = eAh

(√
η
a
tan(

√
ηah+ arctan(

√
a
η
vi−1))

yi−1

)
+ ξi−1, (186)

xSi = (φ
[2]
h/2 ◦ φ

[1]
h ◦ φ[2]

h/2)(xi−1) = φ
[2]
h/2

(
eAh

(√
η
a
tan(

√
ηah

2
+ arctan(

√
a
η
vi−1))

yi−1

)
+ ξi−1

)
,

(187)

where ξi−1 ∼ N (0, C(h)). Again, following the analysis in Section 2.5, we can

perform the stochastic version of the coordinate change to derive the conditionally

linear SDE below,

d

(
v(t)

y(t)

)
=

(
y(t)

y(t)(2av(t) + b− α) + α(dβv(t) + av2(t) + bv(t) + c+ fI) + aσ2
1

)
dt

(188)

+

(
σ1 0

0
√

(2av + b)2σ2
1 + d2σ2

2

)
dW (t).

As in Definition 4, the conditionally linearised IZ with additive noise is a condition-

ally linear SDE in (v, y) with functions,

a1(y) = 0; a2(v) = 2av + b− α (189)

b1(y) = y; b2(v) = α((dβ + b)v + av2 + c+ fI) + aσ2
1 (190)

c1(y) = σ1; c2(v) =
√

(2av + b)2σ2
1 + d2σ2

2. (191)
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We can substitute these functions into the t−time flows given in Section 2.4, starting

at x0 = (v0, y0) to give flows, 
φ
[1]
t (x0) =

ξt
y0


φ
[2]
t (x0) =

v0
νt

 ,

(192)

where

ξt ∼ N(v0 + y0t, σ
2
1t), (193)

νt ∼ N(µ̂, σ̂), (194)

with

µ̂ = y0 exp((2av0 + b− α)t)− α(dβv0 + av20 + bv0 + c+ fI) + aσ2
1

2av0 + b− α
(1− exp((2av0 + b− α)t)),

(195)

σ̂ =
(2av + b)2σ2

1 + d2σ2
2

2(2av0 + b− α)
(exp(2(2av0 + b− α))− 1). (196)

A.2 The adaptive exponential integrate-and-fire model

The adaptive exponential integrate-and-fire model is given by the 2-d system of

ODEs

d

(
v(t)

w(t)

)
=

(
a exp(v(t)

c
) + dv(t) + fw(t) + gI

jv(t) + lw(t) + k

)
dt (197)

With a reset condition,

If v ≥ 18

v → θ (198)

w → w + δ (199)

A.2.1 The canonical splitting

We can apply the canonical splitting to this ODE in the following way,

d

(
v(t)

w(t)

)
=

(
d f

j l

)(
v(t)

w(t)

)
+

(
a exp(v(t)

c
) + gI

k

)
dt. (200)
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We therefore have,

A =

(
d f

j l

)
; N(v, w) =

(
a exp(v(t)

c
) + gI

k

)
. (201)

This therefore yields sub-problems,

dx[1](t) =

(
d f

j l

)
x[1](t)dt (202)

dx[2](t) =

(
a exp(v(t)

c
) + gI

k

)
dt (203)

where x[1](t) = (v[1](t), w[1](t)) ∈ R2 and x[2](t) = (v[2](t), w[2](t)) ∈ R2. Proceeding

as before we get t−time flows,
φ
[1]
t (x0) = x0e

At,

φ
[2]
t (x0) =

−c log(a+gI exp(−v0/c)
gI exp(gIt/c)

− a
gI
)

w0 + tk

 .
(204)

We recompose these flows with Lie-Trotter and Strang compositions to obtain ex-

plicit numerical schemes,

xLTi = (φ
[1]
h ◦ φ[2]

h )(xi−1) = eAh

(
−c log(a+gI exp(−vi−1/c)

gI exp(gIh/c)
− a

gI
)

wi−1 + hk

)
, (205)

xSi = (φ
[2]
h/2 ◦ φ

[1]
h ◦ φ[2]

h/2)(xi−1) (206)

= φ
[2]
h/2

(
eAh

(
−c log(a+gI exp(−vi−1/c)

gI exp(gIh/2c)
− a

gI
)

wi−1 +
hk
2

))
, (207)

where xi−1 = (vi−1, wi−1).

A.2.2 Coordinate change and the Stern approach

Again, for this final model, we have a system which is not conditionally linear but

instead of the form described in Section 2.5 with functions and constants,

g(v) = a exp
(v
c

)
+ dv + gI, (208)

k = f, (209)

a(v) = l, (210)

b(v) = jv + k. (211)
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Note that the first k refers to the coefficient of u in the first component whereas

the second k is a parameter in the AdEx model - similar with g, a. Applying the

coordinate change y(t) = g(v(t)) + ku(t) as usual, we derive a conditionally linear

version of the AdEx model. Recall that, as in the Izhikevich model, the spike rest

condition can either be transformed into (v, y) under the coordinate change, or

maintained in (v, w) with coordinate change every time a spike reset must occur.

We obtain the following conditionally linear version of the AdEx model,

d

(
v(t)

y(t)

)
=

(
y(t)

y(t)(a
c
exp(v(t)

c
) + d+ l) + ((fj − dl)v(t)− al exp(v(t)

c
)− gIl + fk)

)
dt

(212)

Applying the canonical splitting to this conditional linear version of the model we

get,

d

(
v(t)

y(t)

)
=

(
0 1

(fj − dl) (d+ l)

)(
v(t)

y(t)

)
+

(
0

a
c
exp(v(t)

c
)y + fk − al exp(v(t)

c
)− gIl

)
dt.

(213)

Proceeding as before we get t−time flows,
φ
[1]
t (x0) = x0e

At,

φ
[2]
t (x0) =

 v0

(y0 +
β
α
)eαt − β

α

 ,
(214)

where α = a
c
exp(v0

c
), β = fk − al exp(v0

c
)− gIl and,

A =

(
0 1

(fj − dl) (d+ l)

)
. (215)

Applying the Lie-Trotter and Strang compositions, we obtain explicit numerical

schemes,

xLTi = (φ
[1]
h ◦ φ[2]

h )(xi−1) (216)

= eAh

(
vi−1

(yi−1 +
βi−1

αi−1
)eαi−1h − βi−1

αi−1

)
, (217)

xSi = (φ
[2]
h/2 ◦ φ

[1]
h ◦ φ[2]

h/2)(xi−1) (218)

= φ
[2]
h/2

(
eAh

(
vi−1

(yi−1 +
βi−1

αi−1
)eαi−1

h
2 − βi−1

αi−1

))
, (219)
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where xi−1 = (vi−1, yi−1), αi−1 = a
c
exp(vi−1

c
) and β = fk − al exp(vi−1

c
) − gIl.

Following from Definition 1, we have functions,

a1(y) = 0; b1(y) = y, (220)

a2(v) =
a

c
exp(

v

c
) + d+ l; b2(v) = (fj − dl)v + fk − al exp(

v

c
)− gIl, (221)

which we can substitute into the formulas given in Section 2.3 to obtain flows,

φ
[1]
t (x0) =

(
v0 + ty0

y0

)
, (222)

φ
[2]
t (x0) =

(
v0

exp(t(a
c
exp(v0

c
) + d+ l))y0 +

exp(t(a
c
exp(

v0
c
)+d+l))−1

t(a
c
exp(

v0
c
)+d+l)

t((fj − dl)v0 + fk − ale
v0
c − gIl)

)
.

(223)

We recompose these flows with Lie-Trotter and Strang to obtain explicit numerical

schemes,

xLTi = (φ
[1]
h ◦ φ[2]

h )(xi−1) =

(
vi−1 + hφ

[2]
h,2(xi−1)

φ
[2]
h,2(xi−1)

)
, (224)

xSi = (φ
[2]
h/2 ◦ φ

[1]
h ◦ φ[2]

h/2)(xi−1) =

(
φ
[1]
h,1(x

[1]
i−1, φ

[2]
h/2,2(xi−1))

φ
[2]
h/2,2(φ

[1]
h,1(x

[1]
i−1, φ

[2]
h,2(xi−1)), (φ

[2]
h/2,2)(xi−1))

)
.

(225)

A.2.3 Adaptive exponential integrate-and-fire model with additive noise

As before, we consider an additive noise term, yielding an SDE model,

d

(
v(t)

w(t)

)
=

(
a exp(v(t)

c
) + dv(t) + fw(t) + gI

jv(t) + lw(t) + k

)
dt+

(
σ1 0

0 σ2

)
dW (t) (226)

where σ1, σ2 ≥ 0 and W is a 2-d Wiener process. Again, we apply the canonical

splitting to this model to generate sub-problems,

dx[1](t) =

(
d f

j l

)
x[1](t) dt+

(
σ1 0

0 σ2

)
dW (t), (227)

dx[2](t) =

(
a exp(v

[2](t)
c

) + gI

k

)
dt, (228)
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where x[1](t) = (v[1](t), w[1](t)) ∈ R2 and x[2](t) = (v[2](t), w[2](t)) ∈ R2. Proceeding

as before we get t−time flows,

φ
[1]
t (x0) = x0e

At + ξt, (229)

φ
[2]
t (x0) =

(
−c log(a+gI exp(−v0/c)

gI exp(gIt/c)
− a

gI
)

w0 + tk

)
, (230)

where ξt ∼ N (0, C(t)) and

A =

(
d f

j l

)
(231)

Using these flows and a time-step h > 0, we can define the following numerical

schemes,

xLTi = (φ
[1]
h ◦ φ[2]

h )(xi−1) = eAh

(
−c log(a+gI exp(−vi−1/c)

gI exp(gIh/c)
− a

gI
)

wi−1 + hk

)
+ ξi−1, (232)

xSi = (φ
[2]
h/2 ◦ φ

[1]
h ◦ φ[2]

h/2)(xi−1) = φ
[2]
h/2

(
eAh

(
−c log(a+gI exp(−vi−1/c)

gI exp(gIh/2c)
− a

gI
)

wi−1 +
hk
2

)
+ ξi−1

)
,

(233)

where ξi−1 ∼ N (0, C(h)).

Remark 4. There are three expressions for each covariance matrix C(t) (for each

model) depending on the sign of an auxiliary variable (a function of the parameters).

In the case of the AdEx, one of these expressions was not possible to obtain in a

closed form - this case coincides with the standard parameter setting used, as such,

an implementation of the canonical splitting for the AdEx with additive noise was

not achieved.

Performing the coordinate change defined in Section 2.5, we obtain a conditionally

linear form of the stochastic AdEx model,

d

(
v(t)

y(t)

)
=

(
y(t)

y(t)(a
c
exp(v(t)

c
) + l) + (d− gIl + fk + (

aσ2
1

2c2
− al) exp(v(t)

c
) + (fj − dl)v(t))

)
dt

(234)

+

(
σ1 0

0
√
(a
c
exp(v(t)

c
)σ1)2 + (fσ2)2

)
dW (t).

As in Definition 4, the conditionally linearised AdEx with additive noise is a condi-
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tionally linear SDE in (v, y) with functions,

a1(y) = 0; a2(v) =
a

c
exp

(v
c

)
+ l, (235)

b1(y) = y; b2(v) = d− gIl + fk +

(
aσ2

1

2c2
− al

)
exp

(v
c

)
+ (fj − dl)v, (236)

c1(y) = σ1 c2(v) =

√
a

c
exp

(
v(t)

c

)
σ1)2 + (fσ2)2. (237)

We can substitute these functions into the t−time flows given in Section 2.4, starting

at x0 = (v0, y0) to give flows, 
φ
[1]
t (x0) =

ξt
y0


φ
[2]
t (x0) =

v0
νt

 ,

(238)

where ξt ∼ N(v0 + y0t, σ
2
1t) and νt ∼ N(y0 exp((

a
c
exp(v(t)

c
) + l)t)−

d−gIl+fk+(
aσ2

1
2c2

−al) exp(
v(t)
c

)+(fj−dl)v(t)

a
c
exp(

v(t)
c

)+l
(1−exp((a

c
exp(v(t)

c
)+l)t)),

(a
c
exp(

v(t)
c

)σ1)2+(fσ2)2

2(a
c
exp(

v(t)
c

)+l)
(exp(2(a

c
exp(v(t)

c
)+

l)t)− 1)).

B Normal kernel density estimation

In Section 5.2, we aim to compute an estimate of the probability density function

of the ISI in order to compare to the reference distribution obtained with tamed

Euler-Maruyama. We use kernel density estimation with a normal kernel.

Using a numerical scheme, we obtain samples (x1, x2, ..., xn) from the distribution

ISIj. Because we are considering each spike j separately, these samples are inde-

pendent and identically distributed.

Definition 8. The kernel density estimator is given by,

f̂h(x) =
1

n

n∑
i=1

Kh(x− xi), (239)

=
1

nh

n∑
i=1

K

(
x− xi
h

)
, (240)

where K is a non-negative function called the kernel. h > 0 is called the band-
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width [5]. We choose the normal kernel,

K(x) =
1√
2π
e−

1
2
x2

. (241)

For choosing h, we apply Silverman’s rule of thumb [17],

h = 0.9min

(
σ,
IQR

1.34

)
n− 1

5 , (242)

where σ is the standard deviation of the samples and IQR is the inter-quartile range.

C Covariance matrices for stochastic harmonic oscillators

When applying the canonical splitting to a model with additive noise, we must

exactly solve a linear SDE of the form,

dX(t) = AX(t) dt+ Σ dW (t). (243)

Following the analysis from Tamborrino et al [2], we know the exact solution is given

by,

X(t) = eAtX(0) +

∫ t

0

eA(t−s)Σ dW (s) (244)

The stochastic integral is normally distributed with mean 0 and covariance matrix,

C(h) =

∫ h

0

eA(h−s)ΣΣ⊤(eA(h−s))⊤ ds (245)

The form of the covariance matrix C(h) often depends on the sign of a function of

the parameters (a latent parameter). These covariance matrices are given for the

VDP and FHN models. We will label the entries of the symmetric matrix as follows,

C(h) =

(
c11 c12

c12 c22

)
. (246)
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C.1 Van der Pol

For the VDP model, the covariance matrix changes its form based upon the sign of
the latent parameter ϵ2 − 4. In the case ϵ2 − 4 < 0, we have

c11 =
1

2ϵ
(
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) (sinh(ϵh) (√4 − ϵ2ϵ sin
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2
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)
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ϵ
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)
σ
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2
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2
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(247)

+ cosh(ϵh)
(√

4 − ϵ2ϵ sin
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2
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−
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c12 =
1

2
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+ cosh(ϵh)
(
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ϵ
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σ
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2
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)
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√
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2
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1
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(
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If ϵ2 − 4 > 0, we have,
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If ϵ = 2, we have,
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If ϵ = −2, we have,
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C.2 Fitz-Hugh Nagumo

For the FHN model, the latent parameter governing C(h) is ϵ− 4γ. If ϵ− 4γ < 0,

c11 =
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 h√
− ϵ

ϵ−4γ

(ϵ2σ2
1 − 3ϵγσ

2
1 + σ

2
2

)
− 4γ

(
ϵγσ

2
1 + σ

2
2

)

+ cosh(h)

sin

 h√
− ϵ

ϵ−4γ

(ϵ5/2σ2
1

√
4γ − ϵ − ϵγσ

2
1

√
−ϵ(ϵ − 4γ) + σ

2
2

√
−ϵ(ϵ − 4γ)

)
− ϵ cos

 h√
− ϵ

ϵ−4γ

(ϵ2σ2
1 − 3ϵγσ

2
1 + σ

2
2

)
+ 4γ

(
ϵγσ

2
1 + σ

2
2

)

c12 =
1

2(ϵ − 4γ)
(− sinh(h)

ϵ
3/2

σ
2
1

√
4γ − ϵ sin

 h√
− ϵ

ϵ−4γ

− cos

 h√
− ϵ

ϵ−4γ

(ϵ2σ2
1 − 2ϵγσ

2
1 + 2σ

2
2

)
+ 2ϵγσ

2
1 + 2σ

2
2

 (260)
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If ϵ− 4γ > 0,
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Finally, if ϵ = 4γ,
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For the IZ model the latent parameter is b2+2bf+f 2+4dfg, however, as mentioned in

Appendix 4.4, these parameters are actually fixed in the model [12], and this latent
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parameter takes only positive values. The expression for C(h) is extremely long

and is available online in the code. No closed form expression was found for the

covariance for the AdEx model.
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